首页> 外文OA文献 >Development of ss DNA aptamers for c-Myc:Max by SELEX (Systematic Evolution of Ligands by Exponential Enrichment)
【2h】

Development of ss DNA aptamers for c-Myc:Max by SELEX (Systematic Evolution of Ligands by Exponential Enrichment)

机译:通过SELEX开发用于c-Myc:Max的ss DNA适体(通过指数富集进行配体的系统进化)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Cancer, a complicated disease, results from various causes including abnormal overexpression of oncogene products. The c-myc gene was found as the cellular homolog of v-myc oncogene. Its deregulated expression can result in a wide range of tumors in human and mouse. c-Myc, as a transcription factor, requires the Max protein to form a heterodimer that binds to its target DNA sequence, CACGTG, termed an E box, to drive some cancer-related downstream gene expression. Here a strategy of developing DNA aptamer(s) using SELEX (Systemic Evolution of ligands by Exponential Enrichment) was performed to isolate single-stranded DNA molecules that could recognize the c-Myc:Max protein and inhibit c-Myc\u27s activity in vitro and in vivo , and therefore to develop a new type of reagent for cancer therapy.;Aptamers are small single-stranded DNA or RNA molecules that can bind to a wide range of targets from small molecules, such as ATP, to proteins and even to whole cells, with high specificity and affinity. In the procedure of SELEX, we attempted to combine the \u22decoy\u22 approach to develop an anti-c-Myc aptamer. In the design of the original pool, we put a complement of the E box into the 5\u27 primer followed by a 42 base random sequence. We expected that the selected anti-c-Myc aptamer includes a primary c-Myc binding site that may include a loop-like structure. We also expected that the other complement of E box would be selected from the random region and form a stem structure with the one included in the 5\u27 primer. This E box could then bind to the E box binding domain of the c-Myc:Max heterodimer. So the expected anti-c-Myc aptamer would bind to the target protein by two mechanisms - primary aptamer binding and decoy. The combination of primary binding site of the aptamer to c-Myc:Max and the interaction between the decoy component with c-Myc:Max will make the affinity of the anti-c-Myc aptamer higher than only with one primary binding site or only with the E box.;The data we obtained suggest that the single-stranded DNA aptamers prepared by this \u22decoy\u22 method, including full length and truncated sequences, can bind to the c-Myc:Max heterodimer with very high affinity (Kd\u27s from 100-500 nM) and specificity for the target protein, but can not compete with the E box sequence to bind to c-Myc:Max. It was interesting to find that none of the single-stranded DNA molecules we selected included E box sequence, which means that the selected DNA molecules bind to c-Myc:Max at some other sites instead of an E box binding domain.;There are several directions we could go to optimize the current selected DNA molecules so as to develop anti-c-Myc aptamers. First, we could gradually truncate the current aptamers to determine the minimum sequences for each aptamer. Second, an extra E box sequences could be linked to the DNA sequences by rational design to increase the binding affinity. Third, some random mutations could be introduced into the previously selected DNA sequences by doping. Doping means that when the candidate aptamers were synthesized, the percentage of the four bases, A, T, C and G, is not evenly distributed among each position, so some random variations will be added to the original aptamer sequences. By introducing the new mutations, certain members of the degenerate aptamer pool could have higher binding affinity to target protein than the starting aptamer.
机译:癌症是一种复杂的疾病,由多种原因引起,包括癌基因产物的异常过表达。发现c-myc基因是v-myc癌基因的细胞同源物。其失调的表达可导致人类和小鼠的多种肿瘤。 c-Myc作为转录因子,需要Max蛋白形成一个异二聚体,该异二聚体与其目标DNA序列CACGTG(称为E盒)结合,以驱动某些癌症相关的下游基因表达。在这里,进行了使用SELEX(通过指数富集的配体的系统进化)开发DNA适体的策略,以分离可以识别c-Myc:Max蛋白并抑制c-Myc \ u27s活性的单链DNA分子。适配体是小的单链DNA或RNA分子,可以与各种靶标结合,从小分子(例如ATP)到蛋白质,甚至到全细胞,具有高特异性和亲和力。在SELEX的过程中,我们尝试结合使用\ u22decoy \ u22方法来开发抗c-Myc适体。在原始库的设计中,我们将E盒的互补序列插入5 \ u27引物中,然后插入42个碱基的随机序列。我们期望所选择的抗c-Myc适体包括可能包含环状结构的主要c-Myc结合位点。我们还预期E盒的另一个补体将从随机区域中选择,并与5 \ u27引物中包含的一个形成茎结构。然后,该E盒可以结合至c-Myc:Max异二聚体的E盒结合域。因此,预期的抗c-Myc适体将通过两种机制结合至靶蛋白-初级适体结合和诱饵。适体与c-Myc:Max的主要结合位点的结合以及诱饵成分与c-Myc:Max之间的相互作用将使抗c-Myc适体的亲和力高于仅与一个或两个主要结合位点的亲和力我们获得的数据表明,通过这种\ u22decoy \ u22方法制备的单链DNA适体,包括全长和截短的序列,都可以以非常高的亲和力与c-Myc:Max异二聚体结合(Kd从100-500 nM)和对靶蛋白的特异性,但不能与E盒序列竞争结合c-Myc:Max。有趣的是,我们选择的单链DNA分子都不包含E盒序列,这意味着所选的DNA分子在其他位点结合c-Myc:Max而不是E盒结合域。我们可以朝几个方向优化当前选择的DNA分子,从而开发抗c-Myc适体。首先,我们可以逐渐截断当前的适配子,以确定每个适配子的最小序列。第二,可以通过合理设计将额外的E盒序列连接至DNA序列以增加结合亲和力。第三,可以通过掺杂将一些随机突变引入先前选择的DNA序列中。掺杂是指在合成候选适体时,A,T,C和G四个碱基的百分比在每个位置之间分布不均匀,因此会将一些随机变异添加到原始适体序列中。通过引入新的突变,简并的适体池的某些成员可能比起始适体具有更高的对靶蛋白的结合亲和力。

著录项

  • 作者

    Liu, Ying;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号